- 產(chǎn)品描述
EIKEN嗜肺軍團(tuán)菌試劑盒(免疫捕獲法)
廣州健侖生物科技有限公司
主要用途:用于檢測(cè)尿樣中嗜肺軍團(tuán)菌血清型1抗原,以支持軍團(tuán)菌感染的診斷。
產(chǎn)品規(guī)格:20T/盒
存儲(chǔ)條件:2-30℃
EIKEN嗜肺軍團(tuán)菌試劑盒(免疫捕獲法)
我司還提供其它進(jìn)口或國(guó)產(chǎn)試劑盒:登革熱、瘧疾、西尼羅河、立克次體、無(wú)形體、蜱蟲、恙蟲、利什曼原蟲、RK39、漢坦病毒、深林腦炎、流感、A鏈球菌、合胞病毒、腮病毒、乙腦、寨卡、黃熱病、基孔肯雅熱、克錐蟲病、違禁品濫用、肺炎球菌、軍團(tuán)菌、化妝品檢測(cè)、食品安全檢測(cè)等試劑盒以及日本生研細(xì)菌分型診斷血清、德國(guó)SiFin診斷血清、丹麥SSI診斷血清等產(chǎn)品。
歡迎咨詢
歡迎咨詢2042552662
【產(chǎn)品介紹】
貨號(hào) | 產(chǎn)品名稱 | 產(chǎn)品描述 | 產(chǎn)品規(guī)格 | 保存條件 |
JL-ET01 | 免疫捕獲諾如病毒檢測(cè)試劑盒 | 用于檢測(cè)糞便標(biāo)本中的諾如病毒抗原,以支持諾如病毒感染的診斷。 | 20T/盒 | 2-30℃ |
JL-ET02 | 免疫捕獲軍團(tuán)菌檢測(cè)試劑盒 | 用于檢測(cè)尿樣中嗜肺軍團(tuán)菌血清型1抗原,以支持軍團(tuán)菌感染的診斷。 | 20T/盒 | 2-30℃ |
JL-ET03 | 免疫捕獲肺炎鏈球菌檢測(cè)試劑盒 | 用于檢測(cè)尿標(biāo)本中的肺炎鏈球菌抗原,以支持肺炎鏈球菌感染的診斷。 | 20T/盒 | 2-30℃ |
EIKEN
二維碼掃一掃
【公司名稱】 廣州健侖生物科技有限公司
【】 楊永漢
【】
【騰訊 】 2042552662
【公司地址】 廣州清華科技園創(chuàng)新基地番禺石樓鎮(zhèn)創(chuàng)啟路63號(hào)二期2幢101-3室
【企業(yè)文化】
在醫(yī)學(xué)系博士后研究人員Gopinath Sutendra和Evangelos Michelakis教授的下,這一研究小組發(fā)現(xiàn)過去被認(rèn)為僅定位在線粒體內(nèi)的一種酶: 丙酮酸脫氫酶復(fù)合體(PDC)實(shí)際上可以進(jìn)入到細(xì)胞核中,完成它在線粒體中所做的事情:生成乙酰輔酶A。在線粒體中時(shí),PDC利用我們飲食中的碳水化合物來生成乙酰輔酶A是為了產(chǎn)生能量。而在細(xì)胞核中,PDC生成乙酰輔酶A是為了實(shí)現(xiàn)組蛋白乙?;?。
Sutendra說:“一種酶從一個(gè)細(xì)胞器跳躍到另一個(gè)細(xì)胞器中,這真是*,我們的結(jié)果相當(dāng)?shù)捏@人。我們?cè)鞠霗z測(cè)線粒體中乙酰輔酶A的水平和PDC,因?yàn)槲覀冋J(rèn)為它們存在于那里。然而偶然地我們同時(shí)得到了分離出的細(xì)胞核,我們?cè)诩?xì)胞核中看到了PDC。因此我們提出了疑問,‘PDC在那里做什么?’一切由此開始。”
Michelakis 說:“我們驚訝地發(fā)現(xiàn),盡管早就認(rèn)識(shí)到了組蛋白乙?;诩?xì)胞生物學(xué)和醫(yī)學(xué)中的重要性,盡管許多人付諸了努力來開發(fā)調(diào)控組蛋白乙?;乃幬铮珜?duì)于細(xì)胞核中乙酰輔酶A的來源仍不清楚。有時(shí)候一些重要的生物學(xué)問題的答案就在我們身邊,等待著我們?nèi)グl(fā)現(xiàn)。”
該研究小組發(fā)現(xiàn)PDC易位到細(xì)胞核中使得癌細(xì)胞以更快的速度生長(zhǎng),這一發(fā)現(xiàn)或許可促成抗癌戰(zhàn)爭(zhēng)其他的一些策略。由于這些研究結(jié)果與一般情況下我們的DNA調(diào)控有關(guān),這項(xiàng)研究有可能對(duì)于表觀遺傳調(diào)控起至關(guān)重要作用的、許多生理和病理情況產(chǎn)生更廣泛的影響。“發(fā)現(xiàn)將能量生成(新陳代謝過程)與基因調(diào)控在一起的這一新信號(hào)通路,我們感到非常的興奮,”研究人員說。
根據(jù)science上一篇文章介紹,一種細(xì)胞應(yīng)激通路稱為未折疊蛋白反應(yīng)(UPR)既可以激活也可以降低死亡受體5蛋白(DR5),它能促進(jìn)或預(yù)防細(xì)胞抗原抗體。該理論認(rèn)為初始應(yīng)激阻止細(xì)胞抗原抗體或凋亡,以使細(xì)胞有機(jī)會(huì)去適應(yīng),但是如果應(yīng)激持續(xù)下去,它zui終觸發(fā)凋亡。
普林斯頓大學(xué)分子生物學(xué)教授Alexei Korennykh說“這項(xiàng)研究使得所有這種大的復(fù)雜的爛攤子的zui美麗簡(jiǎn)化。基本上,他們識(shí)別和精確定位與這一開關(guān)決定有關(guān)的特殊蛋白并解釋這一決定是怎么做的。”但是加利福尼亞拉霍亞伯納姆醫(yī)學(xué)研究所的Randal Kaufman 并沒有留下深刻印象。他懷疑支持作者主要理論關(guān)于這一關(guān)鍵細(xì)胞過程的實(shí)驗(yàn)生理學(xué)關(guān)聯(lián)性。
Led by Gopinath Sutendra and Evangelos Michelakis, postdoctoral researchers in the Department of Medicine, the team found that the enzyme, pyruvate dehydrogenase complex (PDC), an enzyme previously thought to locate only within the mitochondria, can actually enter the nucleus , To accomplish what it does in the mitochondria: generate acetyl-CoA. In mitochondria, PDC uses the carbohydrates in our diet to produce acetyl-CoA for energy production. In the nucleus, PDC produces acetyl-CoA for histone acetylation.
Sutendra said: "It's really unheard of that an enzyme jumps from one organelle to another organelle, and we're pretty alarming.We originally wanted to examine acetylcholine-coenzyme A levels and PDC in the mitochondria because we thought they were there. Occasionally, however, we got both separated nuclei, and we saw the PDC in the nucleus, so we asked the question, 'Where does the PDC do?'
"We were surprised to find that although the importance of histone acetylation in cell biology and medicine has long been recognized, and despite the many efforts that have been made to develop drugs that regulate histone acetylation, in the nucleus The source of acetyl-CoA remains unclear, and sometimes the answers to some of the key biological questions are right around us, waiting for us to discover. "
The team's discovery that PDC translocates to the nucleus to allow cancer cells to grow at a faster rate may have led to other strategies to fight cancer. Since these findings are linked to our DNA regulation in general, this study is likely to have a broader impact on many physiological and pathological conditions, which are crucial for epigenetic regulation. "We are excited to find this new signal pathway linking energy production (metabolic processes) to gene regulation," the researchers said.
According to an article in science, a cellular stress pathway called unfolded protein response (UPR) activates or reduces the death receptor 5 protein (DR5), which promotes or prevents cellular antigen antibodies. The theory holds that initial stress prevents cellular antigen antibodies or apoptosis, so that cells have a chance to adapt, but it eventually triggers apoptosis if stress persists.
Alexei Korennykh, a professor of molecular biology at Princeton University, said: "This study makes the most beautiful simplification of all this big, complex mess, and basically they identify and pinpoint specific proteins that are relevant to this switch decision and explain that What to do. "But Randal Kaufman of La Jolla Burnham Medical Institute in California did not impress. He doubted his support for the author's primary theory of the experimental physiology of this crucial cellular process.